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Later we will need precise language to discuss the notion of one real number being
‘‘close to’’ another. If a is a given real number, then saying that a real number x is ‘‘close
to’’ a should mean that the distance jx! aj between them is ‘‘small.’’ A context in which
this idea can be discussed is provided by the terminology of neighborhoods, which we
now define.

2.2.7 Definition Let a 2 R and e > 0. Then the e-neighborhood of a is the set
V eðaÞ :¼ fx 2 R : jx! aj < eg.

For a 2 R, the statement that x belongs to VeðaÞ is equivalent to either of the
statements (see Figure 2.2.4)

!e < x! a < e () a! e < x < aþ e:

2.2.8 Theorem Let a 2 R . If x belongs to the neighborhood V eðaÞ for every e > 0, then
x ¼ a.

Proof. If a particular x satisfies jx! aj < e for every e > 0, then it follows from 2.1.9 that
jx! aj ¼ 0, and hence x ¼ a. Q.E.D.

2.2.9 Examples (a) LetU :¼ fx : 0 < x < 1g. If a 2 U, then let e be the smaller of the
two numbers a and 1! a. Then it is an exercise to show that V eðaÞ is contained in U. Thus
each element of U has some e-neighborhood of it contained in U.

(b) If I :¼ fx : 0 & x & 1g, then for any e > 0, the e-neighborhood V eð0Þ of 0 contains
points not in I, and so Veð0Þ is not contained in I. For example, the number xe :¼ !e=2 is in
V eð0Þ but not in I.

(c) If jx! aj < e and jy! bj < e, then the Triangle Inequality implies that

jðxþ yÞ ! ðaþ bÞj ¼ jðx! aÞ þ ðy! bÞj
& jx! ajþ jy! bj < 2e:

Thus if x, y belong to the e-neighborhoods of a, b, respectively, then xþ y belongs to the
2e-neighborhood of aþ b (but not necessarily to the e-neighborhood of aþ b). &

Exercises for Section 2.2

1. If a; b 2 R and b 6¼ 0, show that:
(a) jaj ¼

ffiffiffiffiffi
a2

p
; (b) ja=bj ¼ jaj=jbj:

2. If a; b 2 R , show that jaþ bj ¼ jajþ jbj if and only if ab ' 0.

3. If x; y; z 2 R and x & z, show that x & y & z if and only if jx! yjþ jy! zj ¼ jx! zj. Interpret
this geometrically.

Figure 2.2.4 An e-neighborhood of a
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4. Show that jx! aj < e if and only if a! e < x < aþ e.

5. If a < x < b and a < y < b, show that jx! yj < b! a. Interpret this geometrically.

6. Find all x 2 R that satisfy the following inequalities:
(a) j4x! 5j # 13; (b) jx2 ! 1j # 3:

7. Find all x 2 R that satisfy the equation jxþ 1jþ jx! 2j ¼ 7.

8. Find all values of x that satisfy the following equations:
(a) xþ 1 ¼ j2x! 1j, (b) 2x! 1 ¼ jx! 5j.

9. Find all values of x that satisfy the following inequalities. Sketch graphs.
(a) jx! 2j # xþ 1, (b) 3jxj # 2! x:

10. Find all x 2 R that satisfy the following inequalities.
(a) jx! 1j > jxþ 1j; (b) jxjþ jxþ 1j < 2:

11. Sketch the graph of the equation y ¼ jxj! jx! 1j.
12. Find all x 2 R that satisfy the inequality 4 < jxþ 2jþ jx! 1j < 5.

13. Find all x 2 R that satisfy both j2x! 3j < 5 and jxþ 1j > 2 simultaneously.

14. Determine and sketch the set of pairs ðx; yÞ in R ' R that satisfy:
(a) jxj ¼ jyj; (b) jxjþ jyj ¼ 1;
(c) jxyj ¼ 2, (d) jxj! jyj ¼ 2:

15. Determine and sketch the set of pairs (x, y) in R ' R that satisfy:
(a) jxj # jyj; (b) jxjþ jyj # 1;
(c) jxyj # 2; (d) jxj! jyj ( 2:

16. Let e > 0 and d > 0, and a 2 R . Show that V eðaÞ \ VdðaÞ and V eðaÞ [ VdðaÞ are g-neighbor-
hoods of a for appropriate values of g.

17. Show that if a; b 2 R , and a 6¼ b, then there exist e-neighborhoods U of a and V of b such that
U \ V ¼ ;.

18. Show that if a; b 2 R then
(a) max a; bf g ¼ 1

2 ðaþ bþ ja! bjÞ and min a; bf g ¼ 1
2 ðaþ b! ja! bjÞ:

(b) minfa; b; cg ¼ minfminfa; bg; cg:
19. Show that if a; b; c 2 R , then the ‘‘middle number’’ is midfa; b; cg ¼ minfmaxfa; bg;

maxfb; cg;maxfc; agg.

Section 2.3 The Completeness Property of R

Thus far, we have discussed the algebraic properties and the order properties of the real number
system R . In this section we shall present one more property of R that is often called the
‘‘Completeness Property.’’ The system Q of rational numbers also has the algebraic and order
properties described in the preceding sections, butwe have seen that

ffiffiffi
2

p
cannot be represented

as a rational number; therefore
ffiffiffi
2

p
does not belong toQ . This observation shows the necessity

of an additional property to characterize the real number system. This additional property, the
Completeness (or theSupremum)Property, is an essential property ofR , andwewill say thatR
is a complete ordered field. It is this special property that permits us to define and develop the
various limiting procedures that will be discussed in the chapters that follow.

There are several different ways to describe the Completeness Property. We choose to
give what is probably the most efficient approach by assuming that each nonempty
bounded subset of R has a supremum.
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2.3.5 Examples (a) If a nonempty set S1 has a finite number of elements, then it can be
shown that S1 has a largest element u and a least element w. Then u¼ sup S1 andw¼ inf S1,
and they are both members of S1. (This is clear if S1 has only one element, and it can be
proved by induction on the number of elements in S1; see Exercises 12 and 13.)

(b) The set S2 :¼ fx : 0 " x " 1g clearly has 1 for an upper bound. We prove that 1 is its
supremum as follows. If v< 1, there exists an element s0 2 S2 such that v < s0. (Name one
such element s0.) Therefore v is not an upper bound of S2 and, since v is an arbitrary number
v< 1, we conclude that sup S2 ¼ 1. It is similarly shown that inf S2 ¼ 0. Note that both the
supremum and the infimum of S2 are contained in S2.

(c) The set S3 :¼ fx : 0 < x < 1g clearly has 1 for an upper bound. Using the same
argument as given in (b), we see that sup S3 ¼ 1. In this case, the set S3 does not contain its
supremum. Similarly, inf S3 ¼ 0 is not contained in S3. &

The Completeness Property of R
It is not possible to prove on the basis of the field and order properties of R that were
discussed in Section 2.1 that every nonempty subset of R that is bounded above has a
supremum in R . However, it is a deep and fundamental property of the real number system
that this is indeed the case. We will make frequent and essential use of this property,
especially in our discussion of limiting processes. The following statement concerning the
existence of suprema is our final assumption about R . Thus, we say that R is a complete
ordered field.

2.3.6 The Completeness Property of R Every nonempty set of real numbers that has
an upper bound also has a supremum in R .

This property is also called the SupremumProperty ofR . The analogous property for
infima can be deduced from the Completeness Property as follows. Suppose that S is a
nonempty subset of R that is bounded below. Then the nonempty set S :¼ #s : s 2 Sf g is
bounded above, and the Supremum Property implies that u :¼ sup S exists in R . The reader
should verify in detail that –u is the infimum of S.

Exercises for Section 2.3

1. Let S1 :¼ fx 2 R : x $ 0g. Show in detail that the set S1 has lower bounds, but no upper
bounds. Show that inf S1 ¼ 0.

2. Let S2 :¼ fx 2 R : x > 0g. Does S2 have lower bounds? Does S2 have upper bounds? Does
inf S2 exist? Does sup S2 exist? Prove your statements.

3. Let S3 ¼ f1=n : n 2 NÞ. Show that sup S3 ¼ 1 and inf S3 $ 0. (It will follow from the
Archimedean Property in Section 2.4 that inf S3 ¼ 0.)

4. Let S4 :¼ 1# #1ð Þn=n : n 2 Nf g. Find inf S4 and sup S4.

Figure 2.3.2 u ¼ sup S
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5. Find the infimum and supremum, if they exist, of each of the following sets.
(a) A :¼ x 2 R : 2xþ 5 > 0f g; (b) B :¼ x 2 R : xþ 2 # x2

! "
;

(c) C :¼ x 2 R : x < 1=xf g; (d) D :¼ x 2 R : x2 $ 2x$ 5 < 0
! "

:

6. Let S be a nonempty subset of R that is bounded below. Prove that inf S ¼ $supf$s : s 2 Sg.
7. If a set S % R contains one of its upper bounds, show that this upper bound is the supremum of S.

8. Let S % R be nonempty. Show that u 2 R is an upper bound of S if and only if the conditions
t 2 R and t > u imply that t =2 S.

9. Let S % R be nonempty. Show that if u ¼ sup S, then for every number n 2 N the number
u$ 1=n is not an upper bound of S, but the number uþ 1=n is an upper bound of S. (The
converse is also true; see Exercise 2.4.3.)

10. Show that if A and B are bounded subsets of R , then A [ B is a bounded set. Show that
supðA [ BÞ ¼ sup supA; sup Bf g.

11. Let S be a bounded set in R and let S0 be a nonempty subset of S. Show that
inf S ( inf S0 ( sup S0 ( sup S.

12. Let S % R and suppose that s) :¼ sup S belongs to S. If u =2 S, show that
sup S [ fugð Þ ¼ supfs); ug.

13. Show that a nonempty finite set S % R contains its supremum. [Hint: Use Mathematical
Induction and the preceding exercise.]

14. Let S be a set that is bounded below. Prove that a lower bound w of S is the infimum of S if and
only if for any e > 0 there exists t 2 S such that t < wþ e.

Section 2.4 Applications of the Supremum Property

We will now discuss how to work with suprema and infima. We will also give some very
important applications of these concepts to derive fundamental properties of R . We begin
with examples that illustrate useful techniques in applying the ideas of supremum and
infimum.

2.4.1 Examples (a) It is an important fact that taking suprema and infima of sets is
compatible with the algebraic properties of R . As an example, we present here the
compatibility of taking suprema and addition.

Let S be a nonempty subset of R that is bounded above, and let a be any number in R .
Define the set aþ S :¼ aþ s : s 2 Sf g. We will prove that

supðaþ SÞ ¼ aþ sup S:

If we let u :¼ sup S, then x ( u for all x 2 S, so that aþ x ( aþ u. Therefore, aþ u
is an upper bound for the set aþ S ; consequently, we have supðaþ SÞ ( aþ u.

Now if v is any upper bound of the set aþ S, then aþ x ( v for all x 2 S.
Consequently x ( v$ a for all x 2 S, so that v$ a is an upper bound of S. Therefore,
u ¼ sup S ( v$ a, which gives us aþ u ( v. Since v is any upper bound of aþ S, we can
replace v by sup aþ Sð Þ to get aþ u ( supðaþ SÞ.

Combining these inequalities, we conclude that

supðaþ SÞ ¼ aþ u ¼ aþ sup S:

For similar relationships between the suprema and infima of sets and the operations of
addition and multiplication, see the exercises.
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